A titer plate-based polymer microfluidic platform for high throughput nucleic acid purification.
نویسندگان
چکیده
A 96-well solid-phase reversible immobilization (SPRI) reactor plate was designed to demonstrate functional titer plate-based microfluidic platforms. Nickel, large area mold inserts were fabricated using an SU-8 based, UV-LIGA technique on 150 mm diameter silicon substrates. Prior to UV exposure, the prebaked SU-8 resist was flycut to reduce the total thickness variation to less than 5 mum. Excellent UV lithography results, with highly vertical sidewalls, were obtained in the SU-8 by using an UV filter to remove high absorbance wavelengths below 350 nm. Overplating of nickel in the SU-8 patterns produced high quality, high precision, metal mold inserts, which were used to replicate titer plate-based SPRI reactors using hot embossing of polycarbonate (PC). Optimized molding conditions yielded good feature replication fidelity and feature location integrity over the entire surface area. Thermal fusion bonding of the molded PC chips at 150 degrees C resulted in leak-free sealing, which was verified in leakage tests using a fluorescent dye. The assembled SPRI reactor was used for simple, fast purification of genomic DNA from whole cell lysates of several bacterial species, which was verified by PCR amplification of the purified genomic DNA.
منابع مشابه
Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems
The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developme...
متن کاملQuantifying mRNA levels across tissue sections with 2D-RT-qPCR.
Measurement of mRNA levels across tissue samples facilitates an understanding of how genes function and what their roles are in disease. Quantifying low-abundance mRNA requires a workflow that preserves spatial information, isolates RNA, and performs reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). This is complex because these steps are typically performed in three separ...
متن کاملMicrofluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery.
PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR) has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In ...
متن کاملOne-step White Blood Cell Separation from Whole Blood On a Centrifugal Microfluidic Device
In this work, we propose a fully automated WBCs isolation device from biological sample utilizing centrifugal microfluidics on a polymer based CD platform. Using the novel Laser Irradiated Ferrowax Microvalves (LIFM) and liquid density gradient medium on CD platform, the total process of a blood sample loading on the density gradient medium, fractionating to concentrate the WBC, decanting plasm...
متن کاملMicrofluidic Preparation of Polymer-Nucleic Acid Nanocomplexes Improves Nonviral Gene Transfer
As the designs of polymer systems used to deliver nucleic acids continue to evolve, it is becoming increasingly apparent that the basic bulk manufacturing techniques of the past will be insufficient to produce polymer-nucleic acid nanocomplexes that possess the uniformity, stability, and potency required for their successful clinical translation and widespread commercialization. Traditional bul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical microdevices
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2008